
....

Use	Case	Modeling	and	Test	Cases	Generator	(UMTG)

.

User	Manual	v1.0

..

Software	Verification	and	Validation	Laboratory

.

Interdisciplinary	Centre	for	Security, Reliability	and	Trust

.

University	of	Luxembourg

.

June	9, 2015

Contents

1 Introduction 1

2 UMTG 2

3 UMTG Setup 5
3.1 UMTG distribution . 5
3.2 Prerequisite: Java 7 . 5
3.3 Prerequisite: XMI4Rhapsody plugin . 5
3.4 Copy and Edit the Common Config Files 6
3.5 Installing the Doors plug-in . 7
3.6 Installing Eclipse with plug-ins . 8

3.6.1 Install a dedicated Eclipse version 8
3.6.2 Install the UMTG plug-in into an existing Eclipse distribution . . . 11

4 DOORS Plug-in 13
4.1 Check RUCM Syntax . 13
4.2 Check RUCM Syntax (Debug Mode) . 13
4.3 Create UMTG Project . 14

5 Eclipse plug-in 15
5.1 Prerequisite: Import UMTG project . 15
5.2 Prerequisite: Open Rhapsody project . 15
5.3 Export Model . 15
5.4 Check Model Consistency . 16
5.5 Generate Abstract Test Cases . 17
5.6 Generate Executable Test Case . 18

SVV Lab - Restricted Use Case Modeling (RUCM) User Manual

1 Introduction

UMTG (Use Case Modeller and Test cases generator) is a tool for the automatic genera-
tion of system test cases from use case specification written according to RUCM. UMTG
is a toolset that supports automated test generation and implements the methodology pre-
sented at the 2015 International Symposium on Software Testing and Analysis (ISSTA’15) [?] (a
version of the ISSTA’15 paper is enclosed in the appendix). UMTG comprises two plug-
ins, one for Eclipse [?] and one for Telelogic/IBM Doors [?].

This document overviews the methodology behind UMTG, details the main function-
ality of UMTG and provides the installation instructions for UMTG. This document pro-
ceeds as follow. Section 2 provides an overview of the UMTG methodology, Section 3
details the activities required to install and setup UMTG, Section 4 describes the features
implemented in the plugin for DOORS, Section 5 describes the features implemented in
the plugin for Eclipse, Section ?? provides a tutorial based on BodySenseIII.

..
1

SVV Lab - Restricted Use Case Modeling (RUCM) User Manual

2 UMTG

We designed a modeling methodology based on three main components: use case specifi-
cations written in RUCM format to express requirements [?]; domain models to capture
the domain and support the identification of test inputs; OCL constraints defined on the
domain model to refine use case constraints and post-conditions.

Figure 1 overviews the methodology. The methodology comprises activities performed
by the software engineers and activities that are automated by a toolset. The software en-
gineer elicits requirements with RUCM (Step 1). RUCM is a use case specification format
that provides restriction rules and specific keywords constraining the use of natural lan-
guage in use cases. The domain model is manually created as a UML class diagram (Step 2).
Automated tools are used to check if the domain model includes all the entities mentioned
in the use cases (Step 3). NLP is used to extract domain entities from the use cases. Missing
entities are shown to the software engineer who refines the domain model (Step 4). Steps
3 and 4 are iterative: the domain model is refined until it is complete.

Once the domain model is completed, textual descriptions of pre, post and guard con-
ditions in the use cases are automatically extracted (Step 5) to be reformulated as OCL
constraints by engineers (Step 6). An automated toolset further processes the use cases
with the OCL constraints to generate a Use Case Test Model for each use case (Step 7). A
Use Case Test Model is a directed graph that explicitly captures the implicit behavioural
information in the corresponding use case.

The methodology relies on constraint solving for OCL constraints that are attached
to the nodes of the test models. The goal is to generate test inputs associated with use
case scenarios (Step 8). We use the term use case scenario for a sequence of use case steps
that starts with a use case precondition and ends with a postcondition of either a basic or
alternative flow. Test inputs cover all paths in the testing model and therefore all possible
use case scenarios.

The software engineer provides a mapping table that maps high-level operation descrip-
tions and test inputs on the concrete driver functions and inputs that should be executed
by the test case (Step 9). Executable test cases are automatically generated through the
mapping table (Step 10). The mapping table can be improved in an iterative fashion after
observing the test cases generated by the toolset. If the test infrastructure and hardware
drivers change in the course of the system lifespan, then only the mapping table needs to
change.

Figure 2 shows the mapping between the steps of the UMTG methodology and the
activities performed by software engineers by using the UMTG plug-ins. Steps in italic
indicates activities performed by software engineers by using editors provided either by
Eclipse, Doors, or Rhapsody. The names of the other steps correspond with the names of
the UMTG menu items that provide a given functionality (each functionality is described
in the coming sections). Each step in Figure 2 has a number that recalls the corresponding
step of the methodology in Figure 1.

..
2

SVV Lab - Restricted Use Case Modeling (RUCM) User Manual

Constraints List

OCL Constraints

Use Case
Testing
Model

3. Evaluate the
Model Completeness

10. Generate Test Cases

2. Model the Domain

6. Specify Constraints

List of
Missing
Entities5. Identify Constraints

4. Refine Model

7. Generate the
Use Case Test Model

INCLUDE Use Case Quali
NCLUDE Use Case Qualif
INCLUDE Use Case Quali
THE SYS VALIDATES TH
THE SYS SENDS THE ST
THE SYS SENDS THE CL

INCLUDE Use Case Quali
NCLUDE Use Case Qualif
INCLUDE Use Case Quali
THE SYS VALIDATES TH
THE SYS SENDS THE ST
THE SYS SENDS THE CL

INCLUDE Use Case Quali
NCLUDE Use Case Qualif
INCLUDE Use Case Quali
THE SYS VALIDATES TH
THE SYS SENDS THE ST
THE SYS SENDS THE CL

Use Case Specifications

Domain
Model

Test Cases

1. Elicit Use Cases

 NO ERROR
TEMPARATURE IS VALID
MEASUREMENTS IN LIMITS
. . .

 NO ERROR: errNo = 0
TEMPARATURE IS VALID: t >= 0
MEASUREMENTS IN LIMIT..

activity automated by
the toolset1. Step

activity performed by
the software engineer

Legend:

data flow

Mapping Table

8. Generate
Scenarios and Inputs

9. Specify Mapping Table

1

2

3

4

1

2

5

6

1

2

3

4

4

3

2

1

5

6

1. Step

Use Case
Scenarios

Object
Diagrams

Figure 1: A Methodology for the Automatic Generation of Test Cases

..3

SVV Lab - Restricted Use Case Modeling (RUCM) User Manual

Doors plug-in

Eclipse plug-in

Step 1.2: Check RUCM syntax

Step 1.3: Export UMTG project

Step 2.2: Import UMTG model

Step 3.1: Export Domain model

Step 3.2: Check Model Consistency

Step 6: Write OCL constraints

Step 8: Generate Abstract Test Cases

Step 1.1: Write use cases according to RUCM

Step 2.1: Design a domain model

Step 4: Refine the model

Step 1.2: Correct use cases syntax

Step 9: Specify Mapping Table
Step 10: Generate Executable Test Cases

Figure 2: Mapping between UMTG methodology and the features implemented by UMTG
plug-ins

..4

SVV Lab - Restricted Use Case Modeling (RUCM) User Manual

3 UMTG Setup

3.1 UMTG distribution

UMTG is distributed in a folder that contains different sub-folder with all the artefacts
required for both running UMTG and replicate the Tutorial enclosed in this document.
Figure 3 shows the UMTG Distribution folder and its content.

To simply try UMTG for a workshop or tutorial we suggest to copy the folder “UMTG_distribution”
into your local drive, for example on your desktop as “Desktop\UMTG_distribution”.

Figure 3: UMTG distribution folder

3.2 Prerequisite: Java	7

Please verify the installed java version using the ”java –version” command (see Figure 4). If
Java 7 is not listed in the result, please click Java SE Runtime Environment 7 to install java
7.

Figure 4: verify java version

3.3 Prerequisite: XMI4Rhapsody	plugin

XMI4Rhapsody plugin usually installed under %User Folder% \IBM\Rational\Rhapsody\x.x.x\Sodius\XMI_Toolkit\.
Please re-install Rhapsody by using the bath file (uninstallation is not required) in case of
no installation.

NOTICE: If Rhapsody installed using Administrator account, please find the XMI4Rhapsody
plugin under the user folder of Administrator account.

..5

http://www.oracle.com/technetwork/java/javase/downloads/jre7-downloads-1880261.html

SVV Lab - Restricted Use Case Modeling (RUCM) User Manual

3.4 Copy	and	Edit	the	Common	Config	Files

Before installing plug-ins, all the dependent libraries and configuration files, which under
the “CommonConfigFiles Folder”, need to be firstly placed to the User folder (for example:
c:\Users \John\).

Copy the “SVVTestGenerator” folder under “CommonConfigFiles” into the User folder (see
Figure 5).

Figure 5: Copying the common config files

Secondly, there are two configuration files (“doors.config.properties” and “umtg.config.properties”)
need to be edited.

Open the file “doors.config.properties” under the “DoorsPlugin” folder and edit the file by
following the instructions provided in the comment lines (see Figure 6).

Figure 6: Edit DOORS properties file

Open the file “umtg.config.properties” under the “UMTGPlugin” folder and edit the file by
following the instructions provided in the comment lines (see Figure 7).

..
6

SVV Lab - Restricted Use Case Modeling (RUCM) User Manual

Figure 7: Edit UMTG properties file

3.5 Installing	the	Doors	plug-in

This section describes how to install the DOORS plug-in. The installation proceeds by
copying the plug-in into a folder that we name “Addins Folder”.

The folder “Addins Folder” is the folder that contains all the addins for DOORS written
by using dxl scripts. The “Addins Folder” is located under “%DOORSInstallFolder%\lib\dxl\addins”.

The keyword %DOORSInstallFolder% indicates the installation location of DOORS
(for example: C:\Program Files\Telelogic\DOORS_8.3\).

Following paragraphs list the steps to perform to copy and setup the UMTG plug-in for
DOORS.

1) Unzip (a third party Unzip tool like 7zip) the file gate-7.1xxxx.zip into your User folder.

2) Copy the folder “NLP” under “/DOORSPlugin” into Addins Folder (see Figure 8).

Figure 8: Copying folder “NLP”

3) Edit the addins.idx file under “Addins Folder” with an Administrator privilege (or simply
copy the file addins.idx to your desktop, edit it, and then copy it back to “Addins Folder”).
Add “NLP G _ UMTG” as a new line to the end and save.

4) Open a Formal Module in DOORS, If the installation succeeded, the UMTG menu will
appear in the top menu bar. Figure 9 shows the UMTG menu.

..7

SVV Lab - Restricted Use Case Modeling (RUCM) User Manual

Figure 9: UMTG menu for DOORS

3.6 Installing	Eclipse	with	plug-ins

This sections describes how to install the UMTG plug-in for Eclipse. The installation of
UMTG can be performed either by copying a dedicated Eclipse version into the system
(suggested choice) or by installing the plug-in into an existing Eclipse version. Following
Sections detail the activities required for both the cases.

3.6.1 Install	a	dedicated	Eclipse	version

1) Unzip the Eclipse distribution into a local folder (for example under “Desktop \UMTG_distribution
\eclipse”.

2) Start Eclipse by clicking on eclipse.exe (for example under “Desktop\UMTG distribu-
tion\eclipse”).

3) Install the Rhapsody Eclipse plug-in (see Figure 10)
Figure 10 provides screenshots of the menu items to click in order to perform this activ-
ity. To start the installation open Eclipse and go to Help -> Install New Software..., then
perform the following activities:
1⃝ Add a new repository by clicking the button “add”.
2⃝ Type a meaningful name for the new repository, e.g. “Rhapsody”
3⃝ Click the button “Local...” and locate to the “Eclipse” folder under the Rhapsody

Install Path.
For example: C:\Program Files\IBM\Rational\Rhapsody\8.0.3\Eclipse\
4⃝ Select the first item “IBM(R) Rational(R) Rhapsody(R) Platform Integration” in the
new added repository and make sure other items are unselected.

..
8

SVV Lab - Restricted Use Case Modeling (RUCM) User Manual

Then click Next and Finished to start the installation (Eclipse needs to be restarted to
make the changes to take effect).

Figure 10: Install the Rhapsody Eclipse plug-in

..9

SVV Lab - Restricted Use Case Modeling (RUCM) User Manual

4) Verify the installation (see Figure 11)
1⃝ After restarting Eclipse go to Window -> Open Perspective -> Other...
2⃝ If the installation succeeded a new perspective named “Rhapsody Modeling” will ap-

pear in the popup window.
3⃝ Select “Rhapsody Modeling” and click ok to open that perspective.

Figure 11: Verify the UMTG installation on Eclipse

5) Enable the UMTG menu
1⃝ Under “Rhapsody Modeling” perspective, go to Window -> Customize Perspective...
2⃝ Switch to “Command Groups Availability” Tab in the popup window.
3⃝ Select “UMTGGenerator” and Click OK.

..
10

SVV Lab - Restricted Use Case Modeling (RUCM) User Manual

3.6.2 Install	the	UMTG plug-in	into	an	existing	Eclipse	distribution

This Section describes how to install the UMTG plug-in into an existing Eclipse distri-
bution. Follow these instructions only if you did not already installed a dedicated Eclipse
distribution.

1) Install the UMTG dependencies and plug-ins (see Figure 12)
1⃝ Open eclipse, go to Help -> Install New Software...
2⃝ From the drop list select “Indigo - http://download.eclipse.org/releases/indigo”
3⃝ After the repository loaded, select the Modeling package to install.
4⃝ Restart Eclipse to make the changes to take effect.

Figure 12: Install UMTG dependencies and plug-ins

..
11

SVV Lab - Restricted Use Case Modeling (RUCM) User Manual

2) Install the UMTG plug-in (see Figure 13)
This is done by opening Eclipse and going to Help -> Install New Software..., and then:
1⃝ Add a new repository by click add button.
2⃝ Type in a meaningful name for the new repository, e.g. “UMTG”
3⃝ Click the button “Local...” and locate to the “UMTGPlugin” folder under the UMTG

distribution folder. Click the button OK to close the window.
4⃝ Select the item “snt.svv.umtg.testgenerator” in the new added repository.
Then click the buttons “Next” and “Finished” to start the installation (Eclipse needs to be
restarted to make the changes to take effect).

Figure 13: Installing the UMTG plug-in into an existing Eclipse

3) Enable the UMTG menu
Please refer to the 4th step in Section 3.6.1.

..
12

SVV Lab - Restricted Use Case Modeling (RUCM) User Manual

4 DOORS Plug-in

The UMTG DOORS plug-in activates a new menu in the Doors interface called UMTG.
The menu UMTG provides three functions, Check RUCM Syntax, Check RUCM Syntax (De-
bug Mode), Create UMTG Project that are described in the following.

4.1 Check	RUCM Syntax

The function Check RUCM Syntax enables the software engineers to check if the use case
specification enlisted in the current Doors module follow the RUCM template. In case of
errors in the syntax of the use cases the function will list the sentences which violate the
RUCM template. These sentences are marked as being unknown sentences.

Figure 14 shows function Check RUCM Syntax. Label (1) points to the menu item that
activates the function. Label (2) indicates the command window that starts the external
tool used for checking (this window will be automatically closed along with the closing of
the page with the list of errors). Label (3) shows the window with the list of errors.

Figure 14: Function Check RUCM Syntax

4.2 Check	RUCM Syntax	(Debug	Mode)

The function Check RUCM Syntax simply lists all the sentences that do not match the
RUCM format, and indicates that they are not well-written, but do not give any additional
information about the errors made by the software analyst.

To retrieve additional information about the errors made when writing RUCM test
cases, the software engineer must use the function Check RUCM Syntax (Debug Mode). This
function starts the user interface of GATE, a open source Natural Language Processing
(NLP) library, to let the software engineer collect more information about the error made
when writing the use cases. GATE is the underlying library used by UMTG to process use
cases and extract information.

Figure 15 shows the output of the function Check RUCM Syntax (Debug Mode).

..13

SVV Lab - Restricted Use Case Modeling (RUCM) User Manual

Figure 15: Function Check RUCM Syntax (Debug Mode)

4.3 Create	UMTG Project

Function Create UMTG Project is used once the RUCM syntax checks passed. Function
Create UMTG Project lets the user to create a UMTG Project, which is a kind of Eclipse
project that is used to exchange information between DOORS and Eclipse/Rhapsody. The
UMTG project created by DOORS will be imported into Eclipse to complete the test case
generation from the Eclipse/Rhapsody user interface.

Figure 16 shows the output of function Create UMTG Project.

Figure 16: Function Create UMTG Project

..14

SVV Lab - Restricted Use Case Modeling (RUCM) User Manual

5 Eclipse	plug-in

The UMTG Eclipse plug-in activates a menu that provides four features: Export Domain
Model, Check Model Consistency, Generate Abstract Test Cases,Generate Executable Test Cases.

Following sections describe the four main functionality provided by the UMTG Eclipse
plug-in, plus two prerequisites for the proper execution of the plug-in, i.e. Import a UMTG
project, and Open Rhapsody project.

5.1 Prerequisite: Import	UMTG project

Importing a UMTG project created by using the UMTG Doors plug-in is required in order
to generate test cases by using the UMTG Eclipse plug-in. Project import is done by means
of the import functionality provided by Eclipse.

5.2 Prerequisite: Open	Rhapsody	project

A Rhapsody project needs to be opened before using the UMTG plug-in for Eclipse.

5.3 Export	Model

The function Export Model exports the domain model created by Rhapsody into the XMI
format. To this end the plug-in natively relies upon the export feature of the Rhapsody XMI
Toolkit. Figure 17 shows the wizard that is displayed by Eclipse when the user selects this
functionality. Label (1) in Figure 17 shows the menu item that activates the function Export
Model. Label (2) shows the Exporter wizard from the Rhapsody XMI Toolkit that opens when
this function is selected. Once the Rhapsody XMI Toolkit Exporter wizard is displayed, the
user is expected to select the folder with the domain model to export, and then press next to
select the folder where to save the exported file, i.e. the folder named model in the UMTG
project.

Figure 17: Function Export Model

..15

SVV Lab - Restricted Use Case Modeling (RUCM) User Manual

5.4 Check	Model	Consistency

Once the domain model has been exported, users can use the function Check Model Consis-
tency to check the consistency between the domain model and the use case specification.
UMTG will generate a report in HTML format, this report will be then automatically
opened with the default browser.

In case of inconsistencies, i.e. entity names present in the use case specifications but not
in the domain model, software engineers can repair the domain model by adding domain
entities using the Rhapsody plug-in, execute again function Export Model, and verify again
the model consistency. Software engineers are not forced to build models that are fully
consistent with the use case specifications, model consistency is useful because it helps
software engineers in writing appropriate OCL constraints.

Figure 18: Function Check Model Consistency and its output.

..
16

SVV Lab - Restricted Use Case Modeling (RUCM) User Manual

5.5 Generate	Abstract	Test	Cases

The function Generate Abstract Test Cases is used by software engineers after they have pre-
pared a domain model consistent with the use case specifications, and after they have re-
formulated all the constrains into OCL.

Figure 19: Function Generate Abstract Test Cases and widget

..17

SVV Lab - Restricted Use Case Modeling (RUCM) User Manual

5.6 Generate	Executable	Test	Case

Function Generate Executable Test Case is used to generate executable test cases. Before using
this function software engineers must have filled in a mapping table under ATS/mapping.csv.
The mapping table can be created incrementally, i.e. by first executing function Generate
Executable Test Case, observing the results, and then improving the mapping table.

The generated test cases are directly loaded by UMTG into DOORS, to this end soft-
ware engineer must fill the entry “testcasePath” in the UMTG configuration file named
UMTG.config.properties. The entry “testcasePath” indicates the path where to store test cases
into the DOORS database.

..
18

	Introduction
	UMTG
	UMTG Setup
	UMTG distribution
	Prerequisite: Java 7
	Prerequisite: XMI4Rhapsody plugin
	Copy and Edit the Common Config Files
	Installing the Doors plug-in
	Installing Eclipse with plug-ins
	 Install a dedicated Eclipse version
	Install the UMTG plug-in into an existing Eclipse distribution

	DOORS Plug-in
	Check RUCM Syntax
	Check RUCM Syntax (Debug Mode)
	Create UMTG Project

	Eclipse plug-in
	Prerequisite: Import UMTG project
	Prerequisite: Open Rhapsody project
	Export Model
	Check Model Consistency
	Generate Abstract Test Cases
	Generate Executable Test Case

